формулы
двойного аргумента
cos
2x = cos2x
– sin2
x = 2 cos2
x -1 = 1 – 2 sin2
x = 1 – tg2
x/1 + tg2
x
sin
2x = 2 sin x · cos x = 2 tg x/ 1 + tg2
x
tg
2x = 2 tg x/ 1 – tg2
x
ctg
2x = ctg 2
x – 1/ 2 ctg x
sin
3x = 3 sin x – 4 sin3
x
cos
3x = 4 cos3
x – 3 cos x
tg
3x = 3 tg x – tg3
x / 1 – 3 tg2
x
sin
s cos t = (sin (s+t) + sin (s+t))/2
sin
s sin t = (cos (s-t) - cos (s+t))/2
cos
s cos t = (cos (s+t) + cos (s-t))/2
|